
Teaching Students of Engineering some Insights of the Internet
of Things using Racket and the RaspberryPi

Daniel Brunner
Systemhaus Brunner & Brunner Software

Schulstr. 8
Biedenkopf 35216, Germany

daniel@dbrunner.de

Stephan Brunner
Systemhaus Brunner & Brunner Software

Schulstr. 8
Biedenkopf 35216, Germany

stephan.brunner@systemhaus-brunner.de

ABSTRACT

We gave a course to teach students of engineering some
insights into the Internet of Things (IoT). We started with
an introduction into programming using Racket and the
Beginner Student Language (BSL) teachpack. After that we
introduced the RaspberryPi1 and showed how to read data
from a thermal sensor and switch a LED. With this knowledge
we taught students to implement a simple publish-subscribe
pattern where the RaspberryPi collected some thermal data
and a program on their PC monitored these data and could
switch the LED depending on the measured temperature.
With this setup we explained several aspects of distributed
computing and the Internet of Things in particular.

CCS CONCEPTS

�Social and professional topics �Computing educa-
tion; �Applied computing �Engineering; �Computer
systems organization �Sensors and actuators;

KEYWORDS

Racket, BSL, RaspberryPi, IoT, distributed computing

ACM Reference format:
Daniel Brunner and Stephan Brunner. 2016. Teaching Students of

Engineering some Insights of the Internet of Things using Racket
and the RaspberryPi. In Proceedings of 10th European Lisp Sym-
posium, Brussels, Belgium, April 3–4, 2017 (10th ELS), 2 pages.

DOI:

1 INTRODUCTION AND GOAL

Nowadays a lot of news is written about the “Internet of
Things” (IoT). In Germany these news are often related to
the so-called “Industrie 4.0”, a term which describes a new
way to organize processes of manufacturing. Although the
term is often used in newspapers and even at our universities,
a precise and widely accepted definition does not yet exist.
But most authors would agree that digitalization influences

1http://www.raspberrypi.org

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

10th ELS, Brussels, Belgium

© 2017 Copyright held by the owner/author(s). .
DOI:

manufacturing and leads to new forms of manufacturing
or even to additional product-related services. Therefore
we took this as a starting point and our goal was to teach
students of engineering some basic principles on how to design
a distributed application.

The basic idea was to have a small device (RaspberryPi
with a thermal sensor) which monitors some state of an
imaginary machine and sends this data to a central message
broker. A separate monitoring system (on the student’s PC)
should subscribe to these messages and check if the monitored
device is in some “healthy” state. If the measured data was
out of a given range, some action should be initiated (switch
on a LED which was connected to the RaspberryPi).

Although there are a lot of IoT suites available, we wanted
to accomplish this setup with very basic tools. On the other
hand we wanted to avoid diving into assembler programming
or system programming with C. Therefore we chose Racket
along with the Beginner Student Language and the uni-
verse teachpack from the “How to Design Programs” (HtDP)
teaching materials.

With these in hand we gave a two-day course at the dual
study program StudiumPlus2 of the University of Applied
Sciences of Central Hesse (Technische Hochschule Mittel-
hessen3). Most of our students only had little knowledge
in programming. Some of them took a C++ course at the
beginning of their studies. Therefore we could not rely on
any programming skills.

2 BASIC PROGRAMMING

To teach some basic ideas of programming we chose the
approach of “How to Design Programs (2nd edition)” (see
[2]). We taught some of the material of the first chapters and
emphasized on the structural design recipe (see [1]). Students
could follow and perform their exercises with Racket’s IDE,
DrRacket, which works on the student’s PC as well as on the
RaspberryPi. This took about one third of the whole course.

We tried to limit the material to what really is essential
to build a small distributed application. Therefore we taught
students about some basic data type of BSL: images, num-
bers, strings, booleans as well as some functions on how to
work with these data types. After introducing booleans we
went on to teach some logical operators and ended up with
conditionals (cond and if and some predicates). These con-
cepts were introduced using the universe teachpack which

2http://www.studiumplus.de
3http://www.thm.de

http://www.raspberrypi.org
http://www.studiumplus.de
http://www.thm.de


10th ELS, April 3–4, 2017, Brussels, Belgium Daniel Brunner and Stephan Brunner

implements interactive, graphical programs (so-called world
programs). Along with the data types we introduced the def-
inition of functions and constants using define, comments,
defining and using structs and how to use require.

3 SETUP

After teaching some basics in programming we set up the
following components to establish a simple publish-subscribe
pattern using the universe teachpack, e.g. connecting the
world programs to the universe server, a central control
program. To keep things very simple we omitted any authen-
tication, encryption etc. We built teams consisting of two
students. Each team received a RaspberryPi.

3.1 Student’s PC and RaspberryPi

We provided the students with two modules: one with some
basic struct definitions and constants to establish the publish-
subscribe pattern and a second one where we hid some system
calls to obtain the temperature using the I2C bus or switching
the LED via the GPIO. This was done by simple calls to the
command line tools i2cget and gpio.

We prepared the RaspberryPi with a thermal sensor (LM75,
see [3]), a red LED and the newest Raspbian4 image which
contains a graphical user interface. On top of that we in-
stalled DrRacket. Therefore students could use a simple
VNC viewer to connect to the RaspberryPi and develop their
programs directly on the RaspberryPi using the same IDE.
Consequently students did not have to bother with Linux’
command line programs.

Alternatively they could use the VNC viewer’s function to
upload files. Furthermore having a GUI is a requirement for
the universe teachpack because the world programs need a
to-draw clause.

The task for the student’s PC was to develop a program
which subscribed to the messages of their RaspberryPi, check
if it is in a given range of temperatures and publish a suitable
“change state” message.

After setting up the PC, the RaspberryPi and the above-
described programs the students should monitor their sensor’s
temperature and watch for the LED to light up which it would
if the temperature was out of a given range (e.g. using some
cooler spray on the sensor).

3.2 Instructor’s PC

The instructor’s PC was running the message broker, a simple
server program that implemented the described protocol.
The source code of this component was not shown to the
students. They were only taught how to publish and subscribe
to data. To give a good overview over all RaspberryPis and
their states, we built a small program that subscribed to all
messages from the RaspberryPis and showed their states to
the whole class via projector.

4http://www.raspbian.org

4 DISCUSSION

After the setup was working, we could explain several aspects
of distributed systems and IoT in particular like the availabil-
ity and type of network, low latency, bandwith restrictions,
network congestion, authentication, message signing as well
as topics like data format of the sensor, issues with time
zones, different protocols and file formats. We ended up
giving some advice on how to debug such distributed systems
if something goes wrong.

Using Racket and the universe teachpack (and omitting
lots of security measures) resulted in very short programs:
Our sample implementation for student’s components con-
sisted of 67 lines for the program on the RaspberryPi and
95 lines for monitoring the messages. The modules that
hid some implementation details on the structs and system
programming (LM75, LED) used another 176 lines. There-
fore students were not distracted by an overhead caused by
libraries or the programming language itself. On the instruc-
tor’s side more code was necessary: the message broker took
321 lines and our “overview” another 107 lines. To sum up:
although only a fraction of Racket’s BSL plus the universe
teachpack was used, we were able to come up with a very
short working solution.

After the two-day course students reported that they
learned very fast and were suprised, they could achieve some
results with only little knowledge in programming. We hoped
that omitting authentication and encryption would encourage
some of the students to hack or at least play with some of
the other RaspberryPis. But that did not happen. Maybe
they should be given more time to experiment and to think
about possible shortcomings.

In a future course we are going to spend more time on the
aspects of distributed computing, e.g. in terms of the universe
teachpack: connecting world programs with a universe. This
should broaden the understanding of the IoT and help the
students to implement some of these techniques in their
professional life.

ACKNOWLEDGMENTS

We would like to thank two anonymous reviewers for their
helpful advice and Gerd Manthei of StudiumPlus at Technis-
che Hochschule Mittelhessen who made this course possible.

REFERENCES
[1] Matthias Felleisen. 2015. Growing a Programmer. (8 Septem-

ber 2015). http://www.ccs.neu.edu/home/matthias/Thoughts/
Growing a Programmer.html

[2] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and
Shriram Krishnamurthi. 2014. How to Design Programs (2nd
ed.). MIT Press, Cambridge MA. http://www.ccs.neu.edu/home/
matthias/HtDP2e/

[3] National Semiconductor 2001. LM75: Digital Temperatur Sensor
and Thermal watchdog with Two-Wire Interface. National Semi-
conductor. http://esd.cs.ucr.edu/labs/temperature/LM75.pdf

http://www.raspbian.org
http://www.ccs.neu.edu/home/matthias/Thoughts/Growing_a_Programmer.html
http://www.ccs.neu.edu/home/matthias/Thoughts/Growing_a_Programmer.html
http://www.ccs.neu.edu/home/matthias/HtDP2e/
http://www.ccs.neu.edu/home/matthias/HtDP2e/
http://esd.cs.ucr.edu/labs/temperature/LM75.pdf

	Abstract
	1 Introduction and Goal
	2 Basic Programming
	3 Setup
	3.1 Student's PC and RaspberryPi
	3.2 Instructor's PC

	4 Discussion
	Acknowledgments
	References

